Solid-Phase Stereoselective Synthesis of (E)-1, 2-Disubstituted Ethenes from Polymer-Sopported α-Selenoaldehydes

Shou Ri SHENG^{1, 2}, Lu Ling WU¹, Xian HUANG¹*

¹ Department of Chemistry, Zhejiang University (Xixi Campus), Hangzhou 310028 ² Department of Chemistry, Jiangxi Normal University, Nanchang 330027

Abstract: Reaction of polymer-supported α -selenoaldehydes with Grignard reagents afforded polymer-bound β -hydroxyalkyl selenides, which treated with thionyl chloride and triethylamine leading to (E)-1, 2-disubstituted ethenes in good yield.

Keywords: Solid phase organic synthesis, α-selenoaldehyde, (E)-1, 2-disubstituted ethene.

Polymer-supported reagents have found increasing applications for the preparation of small organic molecules during the past few years¹. Many solution-phase synthetic methods have been developed for the stereoselective synthesis of 1, 2-disubstituted ethenes. As we know so far, however, little effort has been made for the stereoselective preparation of 1, 2-disubstituted ethenes *via* polymer-resins. β -Hydroxyalkyl selenides are useful precursors for the synthesis of olefins²⁻⁴. However, organic selenium reagents always have a foul smell and are quite toxic, which is often problematic in organic synthesis. In connection our research with the preparation of polymer-supported α -selenoaldehydes⁵ and their applications in solid-phase organic synthesis, we wish to report here the first stereoselective synthesis of (E)-1, 2-disubstituted ethenes *via* α -selenoaldehyde resin (**Scheme 1**). Use of these selenium reagents has been proved to provide significant advantages, including decrease volatility and simplification of product work-up.

Reaction of resin 1 (loading = 1.02, 1.10 mmol CHO/g, $R^1 = Ph$, Et) with Grignard reagents at room temperature formed β -hydroxyalkyl selenides resin 2, which shown strong hydroxyl absorption at 3430-3440 cm⁻¹ in their infrared spectra. Treatment of resin 2 with *p*-toluenesulfonic acid or perchloric acid² afforded the products 3 in poor yields. While methanesulfonyl chloride² or trifluoroacetic anhydride and triethylamine⁴ were adopted, the yields of 3 were 50-60%. (E)-1, 2-disubstituted ethenes **3a-3d** were obtained in high yields when thionyl chloride³ was used in the presence of triethylamine (**Table 1**), which are even higher than those of the liquid-phase synthesis.

^{*} E-mail:huangx@mail.hz.zj.cn

Scheme 1

Table 1 Preparation of (E)-1, 2-disubstituted eth	ienes
--	-------

NO.	R^1	R^2	Yield (%) ^a	E/Z ratio ^b
3a	C ₆ H ₅	C_6H_5	85	97/3
3b	C_6H_5	CH ₃	80	95/5
3c	CH_3CH_2	C_6H_5	76	96/4
3d	CH_3CH_2	$C_6H_5CH_2$	81	95/5

a) Overall yields based on the loading of resin 1. b) Determined by ¹H NMR (400 MHz).

Acknowledgment

Project 29932020 was supported by the National Natural Science Foundation of China.

References

- S. J. Shuttleworth, S. M. Allin, P. K. Sharma, *Synthesis*, **1997**, 1217.
 J. Rémion, W. Dumont, A. Krief, *Tetrahedron Lett.*, **1976**, 1385.
- 3. J. Rémion, A. Krief, Tetrahedron Lett., 1976, 3743.
- 4. H. J. Reich, F. Chow, J. Chem. Soc., Chem. commun., 1975, 790.
- 5. S. R. Sheng, L. L. Wu, X. Huang, Chin. Chem. Lett., 2002, In Press.

Received 8 October, 2002